Średnia ruchoma Ten przykład pokazuje, w jaki sposób obliczyć średnią ruchomą szeregu czasowego w Excelu. Średnia ruchoma służy do łagodzenia nieprawidłowości (szczytów i dolin) w celu łatwego rozpoznawania trendów. 1. Najpierw przyjrzyjmy się naszej serii czasowej. 2. Na karcie Dane kliknij Analiza danych. Uwaga: nie można znaleźć przycisku Analiza danych Kliknij tutaj, aby załadować dodatek Analysis ToolPak. 3. Wybierz średnią ruchomą i kliknij OK. 4. Kliknij pole Input Range i wybierz zakres B2: M2. 5. Kliknij w polu Interwał i wpisz 6. 6. Kliknij pole Zakres wyjściowy i wybierz komórkę B3. 8. Narysuj wykres tych wartości. Objaśnienie: ponieważ ustawiliśmy przedział na 6, średnia ruchoma jest średnią z poprzednich 5 punktów danych i bieżącego punktu danych. W rezultacie szczyty i doliny są wygładzone. Wykres pokazuje rosnący trend. Program Excel nie może obliczyć średniej ruchomej dla pierwszych 5 punktów danych, ponieważ nie ma wystarczającej liczby poprzednich punktów danych. 9. Powtórz kroki od 2 do 8 dla przedziału 2 i odstępu 4. Wniosek: Im większy przedział, tym bardziej wygładzone są szczyty i doliny. Im mniejszy interwał, tym bardziej zbliżone są średnie ruchome do rzeczywistych punktów danych. Średnie średnie kroczące: podstawy Z technicznego punktu widzenia technicy odkryli dwa problemy z prostą średnią kroczącą. Pierwszy problem leży w przedziale czasowym średniej ruchomej (MA). Większość analityków technicznych uważa, że działania cenowe. cena otwarcia lub zamknięcia akcji nie jest wystarczająca, na czym można polegać, jeśli chodzi o właściwe przewidywanie sygnałów kupna lub sprzedaży akcji crossoveru MA. Aby rozwiązać ten problem, analitycy przypisują teraz większą wagę najnowszym danym cenowym za pomocą wykładniczo wygładzonej średniej ruchomej (EMA). (Dowiedz się więcej w Eksplorowanie wykładniczo ważonej średniej ruchomej). Przykład Przykład Na przykład przy użyciu 10-dniowego MA, analityk podjąłby cenę zamknięcia 10 dnia i pomnożył tę liczbę przez 10, dziewiąty dzień po dziewiątej, ósmy dzień po ósmym i tak dalej do pierwszego z MA. Po ustaleniu całkowitej liczby analityk dzieli tę liczbę przez dodanie mnożników. Jeśli dodasz mnożniki 10-dniowego przykładu MA, liczba ta wynosi 55. Ten wskaźnik jest nazywany liniowo ważoną średnią kroczącą. (Aby zapoznać się z czytaniem, zobacz Proste średnie ruchome Wyróżnij trendy.) Wielu techników jest zdecydowanymi wyznawcami wykładniczo wygładzonej średniej kroczącej (EMA). Wskaźnik ten został wyjaśniony na wiele różnych sposobów, co dezorientuje zarówno studentów, jak i inwestorów. Być może najlepsze wyjaśnienie pochodzi z John J. Murphys Analiza techniczna rynków finansowych (opublikowanej przez New York Institute of Finance, 1999): Wykładniczo wygładzona średnia ruchoma rozwiązuje oba problemy związane z prostą średnią kroczącą. Po pierwsze wykładnicza średnia wygładzona przypisuje większą wagę nowszym danym. Dlatego jest to ważona średnia ruchoma. Ale podczas gdy przypisuje ona mniejszą wagę do danych dotyczących przeszłych cen, uwzględnia w swoich obliczeniach wszystkie dane z życia instrumentu. Ponadto użytkownik może dostosować wagę, aby nadać większą lub mniejszą wagę najnowszej cenie dni, która jest dodawana do wartości procentowej wartości z poprzednich dni. Suma obu wartości procentowych wynosi do 100. Na przykład cenę za ostatnie dni można przypisać wagę 10 (.10), która jest dodawana do wagi wcześniejszych dni wynoszącej 90 (.90). Daje to ostatni dzień 10 łącznej wagi. Byłoby to równowartość średniej z 20 dni, dając cenę z ostatnich dni mniejszą wartość 5 (.05). Rysunek 1: Średnia ruchoma wygładzona wykładniczo Powyższa tabela przedstawia indeks złożony Nasdaq z pierwszego tygodnia od sierpnia 2000 r. Do 1 czerwca 2001 r. Jak widać wyraźnie, EMA, która w tym przypadku wykorzystuje dane o cenie zamknięcia okres dziewięciu dni, ma określone sygnały sprzedaży na 8 września (oznaczone czarną strzałką w dół). Był to dzień, w którym indeks spadł poniżej poziomu 4000. Druga czarna strzałka pokazuje kolejną nogę, której technicy naprawdę oczekiwali. Nasdaq nie mógł wygenerować wystarczającej ilości i odsetek od inwestorów detalicznych, aby przełamać 3.000 punktów. Następnie spadł ponownie do poziomu 1619.58 w kwietniu 4. Trend wzrostowy z 12 kwietnia zaznaczono strzałką. Tutaj indeks zamknął się na poziomie 1 961,46, a technicy zaczęli postrzegać menedżerów funduszy instytucjonalnych, którzy zaczęli zdobywać okazje, takie jak Cisco, Microsoft i niektóre kwestie związane z energią. (Przeczytaj nasze powiązane artykuły: Przenoszenie średnich kopert: Udoskonalanie popularnego narzędzia do handlu i średnie ruchome przesunięcie.) Jaka jest różnica między średnią kroczącą a średnią ważoną Średnia krocząca z 5 okresów, obliczona na podstawie powyższych cen, zostanie obliczona przy użyciu następujących czynników: wzór: Na podstawie powyższego równania średnia cena w wyżej wymienionym okresie wyniosła 90,66. Używanie średnich kroczących jest skuteczną metodą eliminowania silnych wahań cen. Ograniczeniem jest to, że punkty danych ze starszych danych nie są ważone inaczej niż punkty danych w pobliżu początku zestawu danych. Tu zaczynają grać ważone średnie ruchome. Średnie ważone przypisują większą wagę do bardziej aktualnych punktów danych, ponieważ są bardziej istotne niż dane z odległej przeszłości. Suma ważenia powinna wynosić maksymalnie 1 (lub 100). W przypadku prostej średniej kroczącej wagi są równomiernie rozłożone, dlatego nie są pokazane w powyższej tabeli. Cena zamknięcia AAPL
Autoregresyjna symulacja ruchoma (pierwsze zdanie) Demonstracja jest ustawiona tak, że używa się tej samej losowej serii punktów, bez względu na to, jak są stałe i są one zróżnicowane. Jednak po naciśnięciu przycisku quotrandomizequot zostanie wygenerowana i wykorzystana nowa seria losowa. Utrzymanie losowej serii identycznej pozwala użytkownikowi zobaczyć dokładnie efekty zmian serii w obu seriach ARMA. Stała jest ograniczona do (-1,1), ponieważ rozbieżność serii ARMA wynika z tego, kiedy. Demonstracja dotyczy tylko procesu pierwszego rzędu. Dodatkowe terminy AR umożliwiłyby generowanie bardziej złożonych serii, podczas gdy dodatkowe warunki MA zwiększyłyby wygładzanie. Szczegółowy opis procesów ARMA znajduje się na przykład G. Box, G. M. Jenkins i G. Reinsel, Analiza szeregów czasowych: Prognozowanie i sterowanie. 3 ed. Englewood Cliffs, NJ: Prentice-Hall, 1994. POWIĄZANE LINKI2.1 Modele średniej ruchomej (modele MA) Modele czasowe znane jako modele ARIMA mogą zawierać terminy autore...
Comments
Post a Comment